
1

Classification of Aeronautics System Health and
Safety Documents

Nikunj Oza, Member, IEEE, J. Patrick Castle, Member, IEEE, and John Stutz, Member, IEEE,

Abstract—Most complex aerospace systems involve large num-
bers of text reports relating to safety, maintenance, and associated
issues. The Aviation Safety Reporting System (ASRS) database
spans several decades and contains over 700,000 reports. The
Aviation Safety Action Plan (ASAP) contains more than 12000
reports from various airlines. Problem categorizations have been
developed for both ASRS and ASAP to enable identification of
key system problems. However, repository volume and complexity
can make human analysis difficult. Multiple human experts
are needed, and they often disagree on their classifications.
Consistent classification is necessary to support tracking trends
in problem categories over time. A decision support system that
performs consistent document classification quickly and over
large repositories would be very useful.

We discuss the results of two algorithms we have developed
and implemented to classify ASRS and ASAP documents. The
first is Mariana—a Support Vector Machine with Simulated
Annealing, which is used to find the best hyperparameters for the
model. The second method is classification built on top of Non-
negative Matrix Factorization (NMF), which attempts to find
a document model that represents document features that add
up in various combinations to form documents. We tested both
methods on ASRS documents and ASAP documents with the
latter categorized two different ways. We illustrate the potential
of NMF to provide document features that are interpretable and
indicative of topics. We also briefly discuss the tool that we have
incorporated Mariana into in order to allow human experts to
provide feedback on the document categorizations.

I. INTRODUCTION

Most complex aerospace systems have large numbers of
reports relating to requirements, design, manufacturing, op-
eration, maintenance, safety, and/or associated issues. Such
systems often also have a formal problem reporting system.
Problem reporting systems can be quite large, containing
thousands of reports, spanning many years, and could even
bridge several databases. The Aviation Safety Reporting Sys-
tem (ASRS), despite its constrained scope, spans several
decades and contains over 700,000 reports [1]. The Aviation
Safety Action Plan (ASAP) is a system that many airlines have
chosen to implement and the combined archive contains more
than 12000 reports. Both repositories are currently growing.
These numbers of reports are large enough that relying entirely
on humans to extract knowledge from these reports would be
impractical.

These information repositories contain much valuable infor-
mation about many aspects of aircraft in the NAS. For these
repositories, problem categorizations have been developed to

Nikunj Oza and John Stutz are with NASA Ames Research Center, Moffett
Field, CA 94035-1000, USA.

J. Patrick Castle is with Mission Control Technologies, Moffett FIeld, CA
94035-1000, USA.

enable identification of groups of related reports and analysis
of trends in the rates of occurrence of different problems.
Our primary concern is system health and safety—particularly
detection, diagnosis, prediction, mitigation, and prevention of
ongoing and future system problems. However, repository vol-
ume and complexity make human analysis difficult. The large
number of reports mandates dividing them among multiple
human experts to analyze and categorize the reports. However,
experts are known to disagree on the most suitable anomaly
categories to use, especially in systems such as ASRS and
ASAP where the categories are not mutually exclusive. Also,
we have observed that the same expert analyzing the same
report at different times arrives at different problem catego-
rizations. For anomaly detection and trend analysis on large
datasets or across multiple datasets, consistent categorization
is necessary. A decision support system that automatically
analyzes reports and provides consistent classifications would
be extremely useful.

In this paper, we mainly discuss the results of two classi-
fication algorithms that we have developed and implemented
to classify ASRS and ASAP documents. The first is Mariana,
which is a Support Vector Machine with Simulated Annealing,
which is used to find the best hyperparameters for the model.
The second method is classification built on top of Non-
negative Matrix Factorization (NMF), which attempts to find
a document model that represents document features that add
up in various combinations to form documents. We tested
both methods on ASRS documents and ASAP documents
with the latter categorized two ways. One categorization is
referred to as event types, while the second categorization
uses ASAP contributing factors, which is a categorization
intended to represent causal factors for the ASAP event types.
On the ASRS data, we illustrate the potential of NMF-based
classification to provide basis vectors that are interpretable and
indicative of different topics present within the repository. We
also briefly discuss the tool that we have incorporated Mariana
into in order to allow human experts to provide feedback on
the document categorizations. We plan to incorporate NMF-
based classification and other methods developed in the future
into this tool.

In the next section, we survey some related work on text
classification and the choices that have to be made in imple-
mentation. In section 3, we discuss the datasets on which we
tested our methods. In section 4, we describe Mariana, while
in section 5, we describe the Nonnegative Matrix Factorization
(NMF)-based classifier that we used. In section 6, we compare
our algorithms’ performances on the datasets. In Section 7 we
briefly describe the tool developed to display aviation safety



2

documents and Mariana’s classifications of those documents,
as well as allow human feedback on those classifications. In
Section 7 we describe our plans for further developments and
in section 8 we conclude this paper.

II. RELATED WORK AND RESEARCH

In this section, we briefly describe related work in text clas-
sification. A more comprehensive survey of text classification
and text mining in general can be found in [20]. In the area of
text classification, there are two key decisions that have to be
made: representation of the text and the classification method
used. The documents in their raw form are not amenable to
machine learning, so another representation is needed. The
simplest document representation is the bag of words (BOW).
In this representation, each document is represented by a vec-
tor consisting of as many elements as there are unique words
in the document repository. Each vector element represents the
number of times that a given word occurs in that document.
The repository can be represented by a (BOW) matrix in which
each document’s vector is a row in the matrix. In machine
learning terminology, each document is an example or instance
and each word frequency is a feature. In principle, one could
then apply one of many possible classification algorithms to
document repositories after converting them to BOW matrices.
One difficulty with this scheme is the weighting of words.
Both rare words and very common words should be given
low weight in classification because both types of words
are not useful for classification, where one generally wants
features that come as close as possible to splitting the set
of examples into equal-sized bins. However, very common
words are given very high weight due to their high word
frequency. For this reason, weighting schemes such as term
frequency inverse document frequency (TFIDF) are often used.
TFIDF multiplies the term frequency by the inverse document
frequency, which is related to the reciprocal of the fraction
of documents in which the word appears. This reduces the
weights of very common words. Term frequency and even
TFIDF give excessive weight to long documents, so these are
often normalized so that all documents’ vectors have equal
length. Stop words, which are very common words such as
articles, are often eliminated from documents using a stopword
list.

The bag of words and its weighted variants have one major
weakness—they lose all semantic information because the
order of words is lost. A given document is treated exactly
the same way no matter how its words are reordered. Semantic
information is clearly very important in human understanding
of text. Natural Language Processing (NLP) methods attempt
to maintain semantic information on documents while making
the representation more amenable to machine learning. One
example is a system called PLADS, which expands acronyms
and collapses phrases so that different expressions with exactly
the same meaning (e.g., FL vs. flight level) are reduced to
one word or phrase. PLADS also sets nouns to their singular
form and verbs to the infinitive conjugation. Others have
attempted to use pairs or triples of words as features rather than
individual words. Full parse trees can be constructed in which

the subject and object for each sentence are identified and
sometimes broken down further into nouns, adjectives, prepo-
sitional phrases, etc. The chief drawback of such methods is
that they are typically computationally very intensive. Also,
it appears that the collocation of terms, which is maintained
in the bag of words representation, is often sufficient for
classification, because NLP methods have so far yielded too
little improvement in classification performance to justify their
computation time. We demonstrate this partially in this paper.

Many of the same methods used for non-text classification,
such as decision trees, random forests, and Support Vector
Machines, are used for text [10], [20]. Past experiments have
shown that Support Vector Machines seem to be especially
suitable because they are naturally suited to dealing with
very large numbers of features, which typically exist in text
classification problems [20]. We demonstrate that in this paper.

III. DATASETS

In this section, we describe the three datasets that we use for
our experiments: ASRS, ASAP with event types, and ASAP
with contributing factors.

A. ASRS Documents

The Aviation Safety Reporting System (ASRS), created
30 years ago, is a joint effort by the FAA and NASA [1].
The program was established to collect data and information
about aviation events which could lead to unsafe situations,
or non-standard procedures, and use the data and information
to identify deficiencies and discrepancies in the NAS so
appropriate solutions could be implemented. ASRS reports are
publicly available and are written by pilots, flight controllers,
technicians, flight attendants, and others including passengers.
In general, the reports are filed in response to a specific
event, but general concerns and complaints are also filed.
ASRS reports include factual information about the aircraft,
location, parties involved and a narrative in which the author
describes the event(s) and/or situation. Since these narratives
are specific to aviation they are filled with acronyms and
abbreviations that only those with a working knowledge of
the industry are likely to understand. Each report is read by at
least two aviation experts who identify hazardous conditions
and underlying causes of the reported events. There are now
over 700,000 documents in the ASRS data base with more than
3000 reports added each month. Many air carriers also have
their own internal safety reporting system under the Aviation
Safety Action Plan (ASAP) which may or may not be linked to
the ASRS. Different airlines devised different categorizations
for their documents, which led to the development of a master
version of the categorizations which all organizations could
reference. This version is known as the Distributed National
Action Archive (DNAA).

Aviation-related documents are quite different from existing
data sets, such as Reuters-21578 and 20 Newsgroups [21].
Industry specific terms, references to equipment and positions,
and the use of acronyms differentiate the aviation-related
reports from text that the public is commonly exposed to. The
intended audience of aviation reports is expected to have a



3

working knowledge of the industry so the reports are often
void of descriptive or background material. The Reuters and
20 Newsgroups data sets are much more verbose and use much
more everyday common language.

For our research and development of text categorization
algorithms for the aeronautics domain we have prepared
subsets of ASRS and ASAP reports. Since the Aviation Safety
Reporting System (ASRS) narratives are publicly available,
we identified a subset of the ASRS reports which are repre-
sentative of the entire data set and used this subset for our
analysis. Many categories in the original ASRS have very few
associated reports, which makes assessment of classification
algorithms difficult. For this reason, the subset of documents
we used only contains 22 categories from the original 60, and
contains 28596 documents.

TABLE I
DISTRIBUTION OF THE 28596 SELECTED ASRS DOCUMENTS OVER THE

22 DNAA CATEGORIES.

Cat# #Docs %Docs - Cat# #Docs %Docs
1 1876 6.56 12 4275 14.95
2 16173 56.56 13 2849 9.96
3 615 2.15 14 1654 5.78
4 610 2.13 15 508 1.78
5 3915 13.69 16 1249 4.37
6 7663 26.80 17 556 1.94
7 2230 7.80 18 1490 5.21
8 2844 9.95 19 8534 29.84
9 573 2.00 20 876 3.06

10 1456 5.09 21 441 1.54
11 514 1.80 22 807 2.82

total 61708 215.78

Table I indicates both the non-exclusive nature of the subject
matter expert’s assigned categories and the great imbalance
between category populations, with ratios up to 37:1. Class 2
is assigned to more than half the narratives, classes 6 and 19 to
more than a quarter each, while 12 of the 22 have populations
under 6% of the total.

Table II highlights the exceedingly non-exclusive distribu-
tion of the subject matter expert’s assigned DNAA categories.
On average, the narratives are assigned to 2.16 categories,
with one document assigned to 10 categories. Less than a
third are assigned to single categories, more than a third
have 2 categories, while the remaining third have 3 or more
categories.

Table III describes the term distributions over the documents
by filtering the terms with respect to the number of documents
they occur in. The column labeled ‘minD’ gives the minimum
number of documents per term. The next two columns give
the number of terms and percentage of total terms that appear
in at least the corresponding number of documents appearing
in the first column. Thus row 1 includes the entire stop word
filtered set of 25729 terms, which is 100% of the full term
set, since they all appear in at least one document. The
column labeled ‘Nonzero’ gives the number of distinct term
occurrences, which is the number of non-zero entries in the
BOW matrix after choosing only the columns corresponding
to the corresponding number of terms. The ’Sparsity’ column

TABLE II
NUMBER OF CATEGORIES PER DOCUMENT WITHIN THE SELECTED ASRS

DOCUMENT SET (28596 DOCUMENTS AND 22 CATEGORIES).

#Cats #Docs %Docs
1 9032 31.585
2 9926 34.711
3 6915 24.182
4 1911 6.683
5 565 1.976
6 154 0.539
7 68 0.238
8 16 0.056
9 8 0.028

10 1 0.004

TABLE III
DISTRIBUTION OF STOPWORD FILTERED 2+CHARACTER TERMS WITHIN

SELECTED ASRS DOCUMENT SET.

minD #Term %Term Nonzero Sparsity Totals %Total
1 25729 100.00 1714931 0.23 2615965 100.00
2 17603 68.42 1706805 0.34 2605072 99.58
4 12560 48.82 1694903 0.47 2588504 98.95
8 8991 34.94 1676237 0.65 2563263 97.98

16 6103 23.72 1644694 0.94 2521891 96.40
32 4065 15.80 1599497 1.38 2464005 94.19
64 2685 10.44 1537551 2.00 2384040 91.13

128 1731 6.73 1452340 2.93 2273663 86.91
256 1068 4.15 1331842 4.36 2113264 80.78
512 609 2.37 1164957 6.69 1891332 72.30

1024 351 1.36 978935 9.75 1638920 62.65
2048 162 0.63 707972 15.28 1267763 48.46
4096 69 0.27 445444 22.58 868293 33.19
8192 14 0.05 151219 37.77 364014 13.92

16384 1 0.00 17070 59.69 51928 1.98

is the corresponding matrix sparsity—the percentage of entries
in the bag of words matrix that are nonzero. The column
‘Totals’ is the total number of subset term occurrences, while
’%Total’ is the percentage of total term occurrences in the
repository that represent subset term occurrences. Returning
to row 1, the 25729 terms that occur in at least one document
appear 1714931 times in the repository if a term’s appearance
multiple times within a document is only counted as one
appearance, and appear 2615965 total times in the repository
when counting multiple appearances within documents.

There are several interesting statistics here. Since 100% of
the terms are found in at least one document while 68.42%
of documents are found in at least two documents, we have
that about 32% of documents appear in only one document.
These are useless for text classification. Similarly, terms that
are found in a very large numbers of documents are useless
for classification—0.05% of the terms are found in at least
8192 (28%) of the documents. Unless their distributions have
strong statistical properties, these terms also provide little
information, and so become candidates for an ASRS domain
specific stopword list.

Figure 1 illustrates the 22 DNAA categories’ binary popu-
lation correlations, i.e., the relative degree of co-occurrence.
The strongest correlations, which are still quite weak, involve
the three largest population categories. The largest correlations
involve categories 2, 6, and 10 with correlations ranging from



4

Fig. 1. Binary correlations for the ASRS categories. Diagonal elements, all
with value 1.0, have been suppressed so that the other correlations are more
clearly visible.

0.47 to 0.33. There are also a fair number of 3-way correla-
tions, but the number of significant higher level correlations
decreases rapidly. High correlations between large and small
population categories would imply that essentially all instances
assigned to the smaller category are also assigned to the larger.

Since there are no obviously strong correlations between
the different categories, we assume category independence.
So, instead of building one large multi-category classifier
we treated each category individually and set up a series of
binary (e.g., ‘in the class’ or ‘out of the class’) classification
problems. This gave us some extra flexibility, but by treating
each report as being either “in” or “out” of a category we
added to the imbalance problem of the data by increasing the
number of reports considered “out” of each category.

All of these factors work against the direct applicability
of most conventional statistical text mining techniques, which
have largely been developed for data sets having significantly
different statistical properties. A significant motivation for this
work was finding text classification methods that would work
on our repositories even though they are very challenging for
text classification.

B. ASAP Documents

The ASAP narratives proprietary; however, we can report
some general statistics and the results of our algorithms on
these documents.

Table IV shows that the ASAP event types are not as
imbalanced as the ASRS document set, since no more than
21% of the documents fall into any one ASAP event type
whereas nearly 57% of the documents fall into one ASRS
category. The ASAP event types are also closer to being
mutually exclusive than the ASRS categories, since the ”total”
line of the table indicates that each document is assigned to
about 1.09 categories on average, compared to nearly 2.16 for
ASRS.

Table V corroborates the greater tendency of ASAP doc-
uments to be assigned to only one category. About 60% of

TABLE IV
DISTRIBUTION OF THE 11245 ASAP DOCUMENTS, OVER THE 33 ASAP

CATEGORIES.

Cat# #Docs %Docs - Cat# #Docs %Docs
1 2362 21.00 12 1880 16.72
2 68 0.60 13 1001 8.90
3 1317 11.71 14 540 4.80
4 1449 12.89 15 19 0.17
5 182 1.62 16 71 0.63
6 78 0.69 17 420 3.73
7 86 0.76 18 270 2.40
8 74 0.66 19 86 0.76
9 6 0.05 20 244 2.17

10 80 0.71 21 269 2.39
11 47 0.42 22 83 0.74

Cat# #Docs %Docs
23 134 1.19
24 260 2.31
25 215 1.91
26 469 4.17
27 293 2.61
28 14 0.12
29 0 0
30 29 0.26
31 6 0.05
32 127 1.13
33 25 0.22

total 12204 108.53

TABLE V
DISTRIBUTION OF 11245 ASAP DOCUMENTS AND 33 EVENT TYPES.

#Cats #Docs %Docs
0 2004 17.82
1 6775 60.25
2 2065 18.36
3 325 2.89
4 61 0.54
5 12 0.11
6 1 0.009
7 2 0.018

the ASAP documents are assigned to only one event type,
whereas only about 32% of ASRS documents are assigned to
one category. Nearly 18% of the documents are not classified
at all. These documents may still be useful for some algorithms
such as our NMF-based classification algorithm.

Table VI shows that the terms in the ASAP documents vary
wildly in terms of their occurrences within the documents
just like ASRS. About 37% of the terms are found in three
documents or less. Therefore, these are not very useful for
statistical text mining. The ASAP documents tend to have a
somewhat smaller percentage of terms appearing in a large
number of documents compared to ASAP.

Figure 2 illustrates the correlations between the ASAP
event types. The correlations are generally low just as with
ASRS; therefore, we used the same one-vs-all classification
methodology as with ASRS.

C. ASAP with Contributing Factors

Table VII shows that the contributing factors are in between
the ASAP event types and ASRS categories in terms of



5

TABLE VI
DISTRIBUTION OF WORDS WITHIN ASAP DOCUMENTS.

minD #Term %Term nnz %SP totals %total
1 14686 100.00 722488 0.44 1211872 100.00
2 14686 100.00 722488 0.44 1211872 100.00
4 9242 62.93 709800 0.68 1193767 98.51
8 6215 42.32 694283 0.99 1171274 96.65

16 4195 28.56 672448 1.42 1139192 94.00
32 2769 18.85 641081 2.06 1094147 90.29
64 1789 12.18 597699 2.97 1030608 85.04

128 1118 7.61 537450 4.28 942033 77.73
256 641 4.36 453441 6.29 816939 67.41
512 298 2.03 332617 9.93 631194 52.08

1024 103 0.70 195104 16.84 395805 32.66
2048 28 0.19 90301 28.68 190957 15.76
4096 5 0.03 29789 52.98 55331 4.57
8192 1 0.01 9326 82.93 11527 0.95

16384 0 0 0 — 0 0.00

Fig. 2. Binary correlations of ASAP event types. Diagonal elements, all with
value 1.0, have been suppressed.

the amount of overlap in the categories, as shown by the
136.36% of total documents covered, which indicates that each
document has an average of 1.36 assigned categories. The
contributing factors are also better balanced—only 2 of the
24 contributing factors have fewer than 1% of the documents,
whereas nearly 16 out of the 33 event types have fewer than
1% of the documents.

Table VIII highlights the non-exclusive distribution of the
subject matter expert’s assigned DNAA contributing factors.
Documents are assigned to a maximum of 12 contributing
factors. Only about 37% are assigned to single categories, and
about 30% are not assigned to any contributing factors at all.

Figure 3 illustrates the correlations between the ASAP
contributing factors. The correlations are generally low just as
with the ASAP event types with a few exceptions; therefore,
we assume category independence and use the same one-vs-
all classification methodology for ASAP contributing factors
as for the other categorizations.

Figure 4 illustrates the correlations between the ASAP event
types and contributing factors. The correlations are generally
quite low. The relationships between the contributing factors
and event types may be more complicated and may require

TABLE VII
NON-EXCLUSIVE CATEGORY POPULATIONS

Distribution of the 11245 ASAP documents, w.r.t. the 24 ASAP contributing

factors.

Cat# #Docs %Docs - Cat# #Docs %Docs
1 2252 20.03 13 251 2.23
2 205 1.82 14 799 7.11
3 199 1.77 15 23 0.20
4 276 2.45 16 466 4.14
5 141 1.25 17 1074 9.55
6 1400 12.45 18 699 6.22
7 331 2.94 19 1084 9.64
8 290 2.58 20 218 1.94
9 361 3.21 21 825 7.34

10 1050 9.34 22 378 3.36
11 1062 9.44 23 834 7.42
12 35 0.31 24 1081 9.61

total 15334 136.36

TABLE VIII
NON-EXCLUSIVE CATEGORIZATION, DISTRIBUTION OF 11245

DOCUMENTS AND 25 CONTRIBUTING FACTORS.

#Cats #Docs %Docs
0 3317 29.50
1 4192 37.28
2 1974 17.55
3 831 7.39
4 427 3.80
5 255 2.27
6 125 1.11
7 62 0.55
8 37 0.33
9 19 0.17

10 2 0.02
11 1 0.01
12 3 0.03

other information about the flights described in the reports.
Exploring this possibility will be the subject of future work.

IV. SUPERVISED LEARNING

Supervised learning takes data for which both inputs and
outputs are provided as a training set and uses them to build

Fig. 3. Binary correlations of ASAP contributing factors



6

Fig. 4. Binary correlations of ASAP event types vs. contributing factors.

a model intended to represent the mapping from inputs to
outputs. This model is then used to generate predicted outputs
for new data for which only inputs have been provided. In
our problem, the training set consists of documents that have
already been assigned categories. The model generated by a
supervised learning method is then used to categorize reports
that have previously not been classified. There are many
different supervised learning methods, each of which has its
own strengths and weaknesses. We set out to build a generic
tool with algorithms that have not been inherently designed
to excel in the aviation domain. The point is to avoid the
time and expense associated with building a system specific
to ASRS or ASAP and see how well the system would perform
without such engineering. Additionally, such effort may lead
to overfitting our data, just as excessively complex machine
learning models often overfit the training data.

A disadvantage of supervised learning techniques is that
they are only as good as the training data. Though the aviation
report reviewers who set the labels for the training data are
experts and work hard to be consistent, they are human,
and they frequently disagree on the proper classification(s)
of a report. Even a particular expert who examines the same
report at different times may classify it differently each time.
Therefore, one may argue that using automated classification
will not improve results over humans and that our models will
not represent “ground truth,” but rather the different humans’
biases on different reports’ classifications. Even though our
models cannot represent ground truth since such truth is not
known, our models will enable consistent classification over
time, which is necessary for trend analysis.

As an initial experiment, we looked at several multicategory
classification techniques such as Naive-Bayes, Neural Net-
works, AdaBoost, and SVM [19]. The terms were ranked by
Information Gain and the BOW matrix was reduced to the top
500, 1000, 2000, and 5000 terms. To evaluate the performance
of the classifiers we used the area under the Receiver Operating
Characteristic (ROC) curve. This is a curve that plots false
positive rate (x-axis) against true positive rate (y-axis). The

true positive rate is the fraction of documents inside a class
that are correctly classified as being in the class. The false
positive rate is the fraction of documents outside the class that
are mistakenly classified as being in the class. Many classifiers
return a number that indicates how likely an example is to be
in a class. For example, a classifier may return a value from
zero to one where one indicates that an example is predicted
to be definitely in the class, whereas zero indicates that the
example is definitely predicted to be out of the class. One may
use a threshold of 0.5 on the returned value to decide whether
an example is in the class. However, this threshold can be
varied to achieve the desired trade-off between true positive
and false positive rate. The values of true positive and false
positive rates for these various threshold traces out the ROC
curve. The best classifier achieves an area under ROC curve of
1, because there is at least one threshold for which it achieves
a true positive rate of one and a false positive rate of zero.

As can be seen in Figure 5, standard SVM consistently
matched or outperformed the other methods when looking
at all categories. More recently, we observed some success
using non-negative matrix factorization (NMF) and others
have recently reported success with NMF for text mining as
well [16]. In this paper we present our advancements of both
SVM and NMF and demonstrate our ability to automatically
categorize reports without the use of PLADS or other NLP
methods for preprocessing.

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
 U

n
d

e
r 

R
O

C
 C

u
rv

e

 

 

Linear Discriminant Logistic Regression Random Forests Decision Trees SVM

Fig. 5. Performance of different classification algorithms on 60 ASRS
categories

Both the SVMs and NMF-based classifiers take as inputs
documents in the form of a BOW matrix. The training set also
contains labels for each document in the form of a matrix in
which each row represents a document and each column repre-
sents a category. An entry contains a one if the corresponding
document is thought to be an example of the corresponding
category, and zero otherwise. Both SVMs and NMF-based
classifiers were devised separately for each category, i.e., a
one-vs-all methodology in which each classifier determines
whether the document is in or out of its corresponding cate-
gory. So in an operational setting where new documents are
introduced, each category’s classifier processes the document
and predicts whether the document is in that category.

A. Support Vector Machine (SVM)

Support Vector Machines were developed by Vapnik in 1979
(see [7] for a tutorial). SVMs are a statistical learning method
based on Structural Risk Minimization (SRM). In SRM, a set
of classification functions or hypotheses that classify a set of
data are chosen in such a way that minimizing the training



7

error (what Vapnik refers to as the empirical risk) yields the
minimum upper bound on the test error (what Vapnik refers
to as the actual risk).

The simplest example of a Support Vector Machine is a
linear hyperplane trained on data that is perfectly separable as
shown on the left side of Figure 6. Given a set of input vectors,
xi ∈ Rd, and labels, yi ∈ {−1, 1}, SVM finds a hyperplane
described by its normal vector, w, and distance from the
origin, b, that divides the data perfectly and is equidistant from
at least one point in each class that is closest to the hyperplane
(this distance is shown as m/2 in figure 6). This hyperplane
is a decision boundary and the classification of an unknown
input vector is determined by the sign of the vector operation

xi ·w − b = d (1)

If d ≥ 0 (d < 0) then the input is likely in the class y = +1
(y = −1).

If the data are not perfectly separable this method can be
adapted to compensate for instances that occur on the wrong
side of the hyperplane. In that case slack variables, ξi (one for
each training example), are introduced that measure the error
of misclassified instances of the training data. SVMs find a
hyperplane that best separates the data and minimizes the sum
of the errors ξi by optimizing.

min ‖ w ‖ +C
∑
i

ξi (2)

where C is a user defined weight on the slack variables. If C is
large, the learning algorithm puts a large penalty on errors and
will devise a more complicated model. If C is small, then the
classifier is simpler but may have more errors on the training
set. If the datasets are not balanced it is sometimes necessary
to factor the errors of one class more than the other. Additional
parameters, µy (one for each class), can be added to weigh
one class error over the other.

min ‖ w ‖ +µyiC
∑

ξ (3)

The decision hyperplane can only be linear which is not
suitable for many types of data. To overcome this problem a
function can be used to map the data into a higher or infinite
dimensional space and run SVM on this new space.

Φ : R 7→ H (4)

Because of the “kernel trick”, H may have infinite dimension
while still making the learning algorithm practical. In partic-
ular, one never works directly with Φ but rather with a kernel
function K such that

K(xi, xj) = Φ(xi) · Φ(xj). (5)

There are many possible kernel functions available and new
kernels can be built from the data itself. The kernels only need
to meet Mercer’s Conditions [8] to be used in SVM. For our
classifier we chose a radial basis function kernel,

K(xi,xj) = e−γ‖xi−xj‖2 (6)

where γ is a parameter input by the user.

W

b

W

b

m/2m/2

Fig. 6. Optimum Hyperplane for Separable and Non-Separable Case

1) Hyperparameters: For the set of aviation safety docu-
ments, we have found that the values of the hyperparameters,
C, µ, andγ, greatly affect the performance of the classifier.
The number of dimensions (i.e., terms), unknown relationships
between categories, and the different ratios of documents in
each class make it difficult to build a general set of parameters.
So, they are either determined from basic tests on the input
data or found by a simple grid search. In practice, C and γ
are determined by starting with a coarse mesh and iterating at
increasingly finer scales. This can take hundreds of evaluations
for just two hyperparameters. When adding the µ parameter
to compensate for the unbalanced data, it can take thousands
of iterations to complete even a coarse grid. Instead of using a
brute force search over a grid, we used a Simulated Annealing
search to determine the optimum hyper-parameters. We refer
to the combined SVM and Simulated Annealing Algorithm as
Mariana in honor of the Mariana Trench which is the deepest
location on the surface of the Earth’s crust and as such ”has
achieved the minimum value.”

2) Simulated Annealing: Simulated Annealing is a stochas-
tic search optimization similar to Markov Chain Monte
Carlo [9]. The basic algorithm evaluates the output of the
classifier for a given set of parameters and then randomly
adjusts the values of the hyperparameters for reevaluation. If
the new set of hyperparameters improves the results, the new
set is kept. If it does not, then the results are kept or rejected
based on the probability of how different the current result is
from the best result thus far. Modifying the hyperparameters
occasionally even when they are moving away from the
current maximum reduces the probability of settling on a local
maximum, increasing the chance of achieving the global max-
imum. The data set is broken into three parts, 50% training,
25% validation, and 25% test. The natural distribution of the
categories is maintained in each part. Since we are treating
the multicategory problem as a set of binary classification
problems, there are significantly fewer documents in each class
than not in the class. To ensure that there are enough positive
examples, the training file for each binary classifier is built
by randomly selecting document vectors from the training set
while maintaining a minimum of 10% of documents in the
class. The validation and test set do not change. Once a model
is built from the training set, it is used to predict the categories
of the validation set. We use the area under the ROC curve
to evaluate the predictions. This process is repeated until a
maximum is found or for a predefined number of iterations.
Once the optimum hyperparameters are found for each class



8

the model is then used for a final prediction of the test data.
3) Confidences: The output from the prediction is the

distance from the hyperplane and can be any real number. This
can be misleading when comparing the outputs from different
class models for the same document because the scales of
the different class models need not be the same. Even if the
outputs are comparable in range, the distance is not a true
measure of confidence in the prediction. The categorization is
determined by the sign of the output from the SVM and it
traditionally discards the distance. We combine the distance
and the rate at which each category occurs in the data set to
generate a confidence as follows:

Conf =
1

1− exp (−αd+ β)
, (7)

where α and β contain category information. The final
output is a positive number between 0 and 1 and scaled; so
any value above 0.5 indicates that the document is predicted
to be in the class.

V. NMF FOR ASRS TEXT CATEGORIZATION

Non-negative Matrix Factorization (NMF) is a variation on
the host of mathematically motivated techniques for factoring
large vector-valued data arrays into basis and distribution ma-
trices. Suppose we have d documents and t terms1. The general
approach is to seek a relatively small set of k basis vectors
represented by the t x k matrix W , and a corresponding set of
distribution weight vectors represented by the k x d matrix H ,
such that the transposed bag-of-words matrix X (for NMF, we
assume X is k x n rather than the usual convention of being n
x k) is factored according to X ≈W ∗H by minimizing some
measure of the difference, X −W ∗H . The hope is that the
basis vectors will correspond to some fundamental properties
of the data set, with the distributions mapping those properties
to the data.

Regarding the form (X ≈W ∗H), the convention in NMF-
based text analysis is that the jth column of X represents the
term weights of document j, each column of W is a basis
vector over the term set, and each column of H is is a set
of weightings over the basis vectors. Thus, if we use H•j to
denote the jth column of H and Hi• to denote the ith row of
H , then for the jth document, W ∗H•j ≈ X•j . If each basis
vector W•b is individually L1 normalized to a single term
weight, and the rows Hb• are inversely scaled to maintain the
product, then Hbj is the approximate number of terms, from
basis vector W•b, found in the jth document. If the columns
H•j are then L1 normalized, they give the relative basis vector
weights, independent of document size.

In NMF applications, the data values are non-negative,
typically counts or scalar measurements, and the factorization
is constrained to keep both W and H non-negative. This has a
strong appeal lacking in factorization methods that allow either
basis or distribution values to be negative. With non-negativity,
the basis vectors may be thought of as components, and the

1in general, NMF can be used in the case where there are d examples
that have t features each, but we present NMF as we are using it for text
classification.

distributions as recipes for adding components to match the
data. Both aspects seem more natural than the alternatives,
particularly so for intrinsically non-negative data.

While non-negativity is an appealing property for factoriza-
tion methods, constraining conventional difference minimiza-
tion algorithms to maintain non-negativity has mostly been
difficult. This changed circa 2002, with spreading recognition
of the potential of Lee and Seung’s multiplicative update
approach [12], [13]. For the squared Frobenius norm, the
standard sum of squared matrix values, Lee and Seung’s
original paper gives the minimizing reestimation relations as:

Wab = Wab
(X ∗HT )ab

(W ∗H ∗HT )ab
(8)

Hbi = Hbi
(WT ∗X)bi

(WT ∗W ∗H)bi
(9)

where a and i index over the attributes and instances of X ,
respectively, and b indexes over the basis vectors. This is
actually a reformulation of the standard gradient driven norm
minimizing search, augmented with a conceptually simple step
size computation that maintains the non-negativity constraint.

Starting with non-negative W and H , and applied alter-
nately, these reestimation equations are proven to monoton-
ically lower the norm toward a local stationary point, while
maintaining the non-negative properties of W and H . Lee and
Seung also provided an alternate multiplicative minimization
for the Kullback-Liebler divergence of probability matrices,
and [14], [15] have since developed versions for other matrix
norms.

A. NMF Practicalities

In factoring the prepared data, there is the fundamental
choice of what difference matrix norm shall be minimized with
consequences that are not yet well understood. A basis size
must be chosen, or a range of sizes searched over and eval-
uated. Algorithmic details, particularly factor initializations,
may have significant effects. Since the multiplicative NMF
algorithms are gradient driven, they approach their stationary
points at exponentially decreasing rates. This requires stopping
criteria that balance the opposing requirements of computa-
tional efficiency and numerical accuracy.

Once the data has been factored, understanding the basis and
distribution can be challenging. This is a major problem for
undirected data mining. Understanding is largely a matter of
relating results to external criteria, and so requires additional
information, e.g., subject expertise. In supervised learning, we
have the advantage of a standard against which we can rate
our results.

Our current system uses the standard English stopword list2

to eliminate common English terms that would appear in a
large percentage of the documents and therefore would be
useless for classification. Terms unique to any single document
are clearly useless, although surprisingly common in the ASRS
narratives. A variety of term count weighting schemes have
been devised, intended to emphasize some aspect of the

2SMART’s English stoplist at ftp://ftp.ce.cornell.edu/pub/smart/english.stop



9

statistics. We have found that term weightings which improve
classification performance may also greatly increase the error
norm that our NMF algorithm minimizes, and vice versa, so
end-to-end testing is essential.

B. NMF Application

The work described here was inspired by the promising
results shown in [16] which came in second place in the 2007
SIAM Text Mining Competition, which used the ASRS data
that we use in this paper. Our NMF work described in this
paper is a follow on of that entry, aimed first at reproducing
their results, and then exploring the effects of alternatives
in weighting, factorization and classifier construction. So we
begin by describing their approach and results.

For term extraction, they applied their General Text Parser,
accepting as terms any strings of 2 to 200 characters, which ap-
pear in 2 or more reports. These were filtered against the stop
word list, giving 15,722 terms from 21,519 documents. For
each term t, they compute an entropy with respect to the doc-
ument set as g(t) = 1 +

∑
d(p(t, d) ∗ log2(p(t, d)))/log2(D),

where p(t, d) is the observed proportion of term t in document
d, over the D documents. Thus g(t) ranges from 1, for a
term appearing in a single document, to 0, for one that is
uniformly distributed over all documents. Their final weight
for occurrence count X(t, d) is g(t) ∗ log2(1 +X(t, d)), thus
de-weighting large occurrence counts. No within-document
normalization was applied.

Their factorization used the original Lee and Seung algo-
rithm for minimizing the summed squared difference, W ∗
H − X , started from random W and H matrices, with 5
convergence cycles. Their basis size was set at 40, almost
twice the category count of 22. Their predictive system was
tuned against the training data by splitting 70-30 for training
and testing. In this, their entropic weight, g(t), forces a choice
regarding what data will contribute. Their choice was to group
both training and test documents (not labels), compute g(t)
with respect to the whole, factor the whole, and then separate
the distribution, H , into training and test sets for prediction.
The same grouped approach was used for their contest entry,
with only training categories available.

Their predictor construction is fundamentally

Cp = f(HT
p ∗ (Ht ∗ Ct)) (10)

where inputs Ht and Hp are the NMF training and pre-
dictive distribution matrices, and Ct and Cp are 0/1 valued
training and predictive document category indicator matrices.
Function f combines a level cutoff and binary conversion from
assessments to logical predictions. In practice, several other
filters are applied to the inputs and intermediate results.

C. NMF Investigations

We used our own term extraction code, with the same stop
word list, getting 15431 two or more character terms appearing
in two or more documents of the training set—slightly less
than what was found in [16]. While placing no limit on term
length, we found none that exceeded the 200 character limit
used in [16]. Our NMF code has evolved from the public

distribution of Dr. Patrick Hoyer3, but was run in the same
basic mode used in [16], with identical core computations.
We typically ran the convergence to 50 cycles, well down on
the exponential approach to convergence, or else to a 1e-4
relative convergence rate, which normally terminated between
70 and 100 cycles.

Our classifier construction code is a MATLAB memory
limit adaptive matrix coded reimplementation of that submitted
to the SIAM competition by Allen, et. al.,[16]. Predictive
quality is evaluated per the SIAM competition specification,
basically a sum of the traditional receiver operator character-
istic (ROC) curve area and a category confidence measure.
Using these, we have duplicated the results in [16], improved
on that result by 25%, and investigated a range of variations
on their approach to NMF based classification.

We initially investigated two simple alternatives to the term
weighting used in [16]. Using the raw counts, as unweighted
term counts, reduced the NMF error matrix norm about 30-
fold, relative to the log-entropic weighted terms cited in [16],
but severely degraded prediction quality. Using raw counts
with stop words retained gives about a 100-fold reduction in
NMF norm, and very severe reduction in prediction quality.
A later survey, using the ASAP data to predict contributing
factors, looked into all 24 combinations of the 4 local and 6
global weightings discussed in [6]. None of these combinations
showed any significant improvement over the log-entropy
weighing.

We investigated the effect of retaining only terms that appear
in a minimum number of documents. We have investigated
minimum document counts of 2, 5, 10, 20, and 40. At a
minimum of 40 documents per term, we eliminate about 90%
of the original terms, while retaining about 90% of the original
term occurrence counts. Thus there are clear computational
advantages to term filtering. We find a clear response to
term filtering in the NMF approximation error norm, with a
minimum Frobenius norm consistently observed at 10 docu-
ments per term. This optimality of the factorization error is
not reflected in the final predictive performance. Seemingly
random variations between otherwise identical runs, attributed
to the random NMF factor initialization, generally exceed
the variation between the minimum document count groups.
Increasing minimum document count over the range from 2
to 40 increases the predictive quality by only a few percent,
but greatly reduces computational costs.

We made a limited investigation into the effect of varying
the NMF basis size, k, choosing k of 33, 44, 55 and 99
as reasonable for a category count of 22. At these levels,
increasing basis size gives a small but consistent decrease in
the error matrix norm and a corresponding increase of a few
percent in the prediction quality, with proportional increase in
computational costs.

The Lee and Seung algorithm’s error matrix norm, plotted
against convergence cycles, shows the exponential approach to
a fixed point that is characteristic of many difference-driven
algorithms. We have investigated the effect of this convergence
on prediction quality, recording the factorization at every

3http://www.cs.helsinki.fi/patrik.hoyer/. A related paper is [18].



10

5 cycles. The initial convergence actually gives reasonable
predictions, with quite good predictions at 5 cycles, the quality
increasing an additional 30% between 5 and 30 cycles, and
only slightly thereafter. Increasing convergence cycles over the
5 used in [16] was the chief source of our improved results, but
entails significant computational costs for rapidly decreasing
improvement.

The predictor construction in [16] involves several docu-
ment and category-wise relative magnitude filters, and con-
version of the filtered Ht to binary values. Investigating the
parameter space, we find predictive quality is not strongly
affected, so long as the final document-wise relative thresh-
olding of Cp4, for acceptance of the larger category values as
assignments, is not too low. Eliminating the binary conversion
of Ht does help slightly.

The core predictive computation done in [16] is essentially

Cp = HT
p ∗Ht ∗ Ct.

Symmetry suggests that Hp∗Cp = Ht∗Ct should give better
predictions, preferably as Cp = H−1

p ∗Ht ∗Ct. Unfortunately,
Hp is very far from being invertible. We investigated ways
to solve the symmetric form for non-negative Cp. Our best
approach uses a few half cycles of Lee and Seung’s multiplica-
tive update, solving Hp ∗Cp = Ht ∗Ct with Hp and Ht ∗Ct
held fixed throughout. The results, with respect to variation
of other factors, are generally consistent with those obtained
in [16]. With random initialization of Cp, the predictive quality
is depressed about 10% relative to Allen et al. [16] Initializing
Cp with Allen et al.’s result, and dropping the filters on Ht and
Hp, gives about 25% improvement on their reported results.

In [16], the entropic term weight g(t) sums
p(t, d)log2(p(t, d)) over all documents d. This works
well when both training and test documents are at hand. For
a production system, it will be advantageous to train the
system on initial data, and then apply it to new instances as
they become available. It is then necessary to retain g(t),
possibly update it, and apply it to new instances. We have
not investigated this evolution of g(t), using the fixed value
from the training data for our production mode experiments.

Obtaining a classifier in production mode is more difficult
than it was for Allen et al.[16], where they factored the joint
training plus test data set and then separate H into Ht and
Hp to classify the test set using Cp = HT

p ∗ Ht ∗ Ct. To
duplicate the situation in production mode where one only has
a training set to work with and then has to classify test sets
without seeing the narratives first, we factored the training
BOW Xt into Wt ∗ Ht, and then obtained Hp by solving
the equation Wt ∗ Hp = Xp. We then classified test data
using Cp = HT

p ∗ Ht ∗ Ct. The predictive quality is only
slightly lower than that obtained with joint factoring. This is
as expected, on account of the smaller data set used to generate
Wt, which only has 3/4 the document set and 90% of the terms
available in the joint calculation. We also performed some

4For each document, a threshold is chosen such that for each category, if
the corresponding value of Cp is greater than the threshold, then the document
is considered to be a member of that category, and otherwise it is not.

limited experiments on ASAP in which we performed the
factorization with both the labeled training documents and the
unlabeled documents, which is an example of semi-supervised
learning. The performance did not improve significantly over
the case where we did not use the unclassified documents.

VI. RESULTS

We first tested Mariana with raw and PLADS-processed
text to assess how useful PLADS and the simulated annealing
within Mariana would be. Mariana’s process of choosing better
hyperparameters improves the area under the ROC curve by
10% or more in some of the categories on raw text. It also
gives equal improvement on text that has been processed by
the PLADS system. As shown in Figure 7, there is little
difference in performance when this process is used on raw
text and PLADS processed text. Because of the overhead NLP
techniques tend to require. For this reason, in our subsequent
tests, we use only raw text.

0.6

0.7

0.8

0.9

1

Category

A
re

a
 U

n
d
e
r 

R
O

C
 C

u
rv

e

 

 

Raw Text

PLADS Text

Fig. 7. Comparison of Raw Text and PLADS Processed Text using Optimum
Hyperparameters

Once convinced that the algorithms were comparing well
against other techniques, we evaluated the performance of the
full tool by auto-classifying 100 randomly selected reports and
having the results reviewed by a problem report expert. The
reviewed results were encouraging. Our stated goal was for the
reviewer to approve of at least one of the auto-classification
selections 75% of the time. The reviewer agreed with the top
classification 73% of the time. The reviewer agreed with one
or both of the top two classifications 86% of the time, and
with the top three classifications 90% of the time. A separate
review of the 100 reports was done by another subject expert.
Then our reviewer reviewed their classifications, and agreed
with their top (and only) classification 89% of the time. These
results not only indicate that Mariana is well within expected
classification levels, but that reviewers disagree amongst them-
selves. Since there is no expectation that an automated learning
system could outperform the expert who classified the training
documents that it learns from, we feel that the Mariana results
are quite positive.

We include the results of applying Linear Discriminant
Analysis [10], which is a linear classification method, in order
to assess whether Mariana and NMF are generating a model
more sophisticated than a linear model. Linear Discriminant
Analysis assumes that each class is modeled as a Gaussian
in the space of its features and finds a linear classifier that
separate the classes.

Figure 8 shows the areas under the ROC curves for Mariana,
NMF, and LDA applied to the ASRS event types. Overall,



11

Fig. 8. Performances of Mariana and NMF on ASRS categories.

Mariana and NMF outperform LDA most of the time—
Mariana outperforms LDA on 16 of the 22 categories and
NMF outperforms LDA on 21 of the 22 categories—however,
not by a great amount.

Fig. 9. Performances of Mariana and NMF on ASAP Event Types.

Figure 9 shows the areas under the ROC curves for Mariana,
NMF, and LDA applied to the ASAP event types, together
with the fraction of documents in each category, normalized
so that the category with the largest number of documents
(category 1) has a value of 1. We see that LDA tends to
perform particularly poorly when the number of documents in
the category is low. NMF and especially Mariana are much
more stable in their performances and clearly outperform
LDA. The stability of performance of NMF and Mariana and
their good performances on low-population categories is very
important for classifying ASRS and ASAP reports since we
expect many categories to have few documents but accurately
determining when a document is in one of these categories is
very important.

Figure 10 shows the areas under the ROC curves for

Fig. 10. Performances of Mariana and NMF on ASAP Contributing Factors.

Mariana, NMF, and LDA for the ASAP contributing factors, as
well as the fraction of documents in each category normalized
so that the category with the largest number of documents
has value 1. LDA’s performance is more stable here than for
event types because the contributing factors all seem to have a
reasonable number of documents, whereas several event types
have too few documents for LDA to give a useful result. Once
again, Mariana and NMF show superior performance relative
to LDA, especially on contributing factors that have relatively
few documents.

In section 5, we pointed out that one of the appealing
properties of NMF is that it produces nonnegative components
of the data being factored. These components have sometimes
shown themselves to correspond to realistic parts of the objects
being considered, such as parts of a human face [15]. We have
begun investigating the interpretability of the basis vectors
produced by NMF on our text classification problems. In
Table IX, we give examples of two basis vectors from three
runs of NMF (with different training and test set mixes drawn
from the original dataset) on the ASRS repository. One basis
vector was drawn from each of the three runs such that the
resulting three basis vectors were the closest such triple in
terms of L1-norm. The top 20 words within the bases in terms
of weight are shown as the three left columns of table IX.
The three right columns are the words corresponding to the
second closest such triple. One can see from these examples
that the three runs came up with bases that are relatively close
to one another. The two triples are also quite different from
each other. In examining six such triples of basis vectors,
we found that the six bases were quite different from one
another. However, the 20 words within a basis vector are
clearly quite related. The first basis set clearly seems to be
describing some fuel tank related problem and the second
basis set clearly describes an issue related to a repair. We
are unable to show corresponding results on the ASAP data
because they are proprietary; however, we did observe basis
sets with similar properties in that the bases were significantly
different from each other but the words within each basis



12

were clearly related. We mentioned in section 2 that the
BOW representation maintains word collocation information.
It appears that NMF is finding the significant collocations that
are indicative of topics and keeping them together.

VII. MARIANA - THE TOOL

We have incorporated Mariana into a tool that allows
analysts to view text reports and Mariana’s classifications of
them, and also provide feedback on the classifications. We
have built an interactive web tool that incorporates the Mariana
models and classifier with an online database of ASRS reports.
The flowchart in Figure 11 describes the process.

The subject expert analysts can log onto the website and
select a set of reports to be auto-classified. Once a set of
reports are selected, Mariana will predict the categories the
documents belong to and display only the predicted categories
that have a 50% confidence or more. The user can then
evaluate the report and confirm or correct the classifications.
Figure 12 is a screenshot of the tool displaying a sample report,
and the results of the Mariana classification algorithm. And,
in fact, as can be seen in the figure, the classifications are
ranked by confidence in the prediction. The Mariana auto-
classification online system is going through a trial at an air
carrier’s site.

The reports can be displayed to an unlimited number of
reviewers and each of the expert’s classifications are kept,
thus providing an ability to track both the performance of
the auto-classification models and algorithm, and the inter-
operator agreement. New models can be easily built and
incorporated into the tool, which would be useful when new
data is available or the data changes enough that the current
model’s performance drops.

VIII. FUTURE WORK

The tool that we presented above is designed to allow expert
user feedback on the classifications done by the model. To
this end, we will investigate online updating of our models
as new reports arrive. We also plan to incorporate NMF and
other models into the tool depicted in figure 12 to form an
ensemble classifier which can outperform any of its constituent
models individually if the appropriate combining scheme is
used. Within the SVM and NMF-based classifiers themselves,
we plan to investigate how to enable them to directly optimize
false positive rate and false negative rate at the desired tradeoff
(e.g., optimize false positive rate subject to a maximum
allowable false negative rate of 0.01), rather than having to
optimize accuracy (for SVM) or a matrix norm (for NMF)
and hope that the result yields a good area under the ROC
curve.

We plan to use the tool depicted in figure 12 as well as any
classifiers that we add to it to perform trend analysis of the
various anomaly categories. Within ASAP we plan to further
investigate possible connections between the contributing fac-
tors and event types as we are able to leverage more reports
and perhaps other relevant data.

IX. CONCLUSION

In this paper, we presented the results of classifying ASRS
and ASAP text reports using an SVM-based classifier and
an NMF-based classifier. We showed that the accuracies of
these algorithms are quite high and are relatively stable over a
set of categories with highly-varying numbers of reports. We
also demonstrated the potential for NMF bases to be inter-
pretable and allow identification of significant topics within
a document repository. We have also developed a tool that
presents classification results in an intuitive manner that allows
experts to view these classifications and provide feedback.
The tool, together with the classifiers we have developed so
far and new classifiers that we and others will develop, will
enable trend analysis of the various anomaly categories and;
therefore, a greater ability to characterize the health of the
national airspace.

REFERENCES

[1] NASA, ”Aviation Safety Reporting System (ASRS) Program Overview,”
http://asrs.arc.nasa.gov/overview.htm, 2007.

[2] A.N. Srivastava and B. Zane-Ulman, ”Discovering Recurring Anomalies
in Text Reports Regarding Complex Space Systems,” Proceedings of the
2005 IEEE Aerospace Conference, 2005.

[3] A.N. Srivastava, et al., ”Enabling the Discovery of Recurring Anomalies
in Aerospace Proplem Reports using High-Dimensional Clustering Tech-
niques,” 2006 IEEE Aerospace Conference, Big Sky, MT, March 2006.

[4] MATLAB’s single linkage and agglomerative clustering.
[5] A. Banerjee, et al., “Generative Model-based Clustering of Directional

Data,” SIGKDD ’03, Washington, DC, USA, August 2003.
[6] M.W.Berry and MBrowne, Understanding Search Engines - Mathematical

Modeling and Text Retrieval, SIAM, 1999.
[7] C.J.C. Burges, ”A Tutorial on Support Vector Machines for Pattern

Recognition,” Data Mining and Knowledge Discovery, 2(2):955-974,
1998.

[8] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and other Kernel-Based Learning Methods, Cambridge Uni-
versity Press, 2000.

[9] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed., John Wiley
& Sons, 2001.

[10] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer, 2001.

[11] D.D. Lee and H.S.Seung, “Learning the parts of objects by non-negative
matrix factorization.”, Nature, 401(6755):788-791, 1999.

[12] D.D. Lee and H.S.Seung, “Algorithms for Non-negative Matrix Factor-
ization”, in Advances in Neural Information Processing 13 (Proc. NIPS
2000), MIT Press, 2001.

[13] L.K.Saul and D.D. Lee, “Multiplicative Updates for Classification by
Mixture Models”, Proceedings NIPS 2001.

[14] I.S.Dhillon and S.Sra, “Generalized Nonnegative Matrix Approximations
with Bregman Divergences”, Proceedings NIPS 2005.

[15] Y.Wang, Y.Jia, C.Hu and M.Turk, “Fisher Non-Negative Matrix Factor-
ization for Learning Local Features”, in Asian Conference on Computer
Vision, 2004.

[16] E.G. Allen, M.R. Horvath, C.V. Kopek, B.T. Lamb, T.S. Whaples and
M.W. Berry, “Anomaly Detection Using Non-negative Matrix Factoriza-
tion”, Survey of Text Mining II, pp. 203-217, Springer London, 2007.

[17] Seventh SIAM International Conference on Data Mining (SDM
2007), Text Mining Workshop’s text mining competition website at
http://www.cs.utk.edu/tmw07/.

[18] P. Hoyer, “Non-negative matrix factorization with sparseness con-
straints”, in Journal of Machine Learning Research 5:1457-1469, 2004.

[19] A.N. Srivastava, et. al., ”Enabling the Discovery of Recurring Anoma-
lies in Aerospace Problem Reports using High-Dimensional Clustering
Techniques,” Proceedings of the IEEE Aerospace Conference, Big Sky,
Montana, March 4-11, 2006.

[20] A. Hotho and A. Nurnberger and G. Paab, ”A Brief Survey of
Text Mining,” Zeitschrift fuer Computerlinguistik und Sprachtechnologie
(GLDV-Journal for Computational Linguistics and Language Technolo-
gie). 20(2):19-62, 2005.



13

TABLE IX
EXAMPLES OF ASRS BASIS VECTORS

FUEL FUEL FUEL INSTALL INSTALL INSTALL
TANK TANK TANK INSPECT INSPECT REMOVE

POUND POUND POUND REMOVE REMOVE REPLACE
GALLON GALLON GALLON REPLACE MECHANIC ENGINEER

GAUGE GAUGE GAUGE MECHANIC REPLACE MANUAL
PUMP PUMP PUMP FOUND PART INSPECT

FUELTANK BURN BURN WORK MANUAL WORK
BURN FUELTANK FUELTANK MANUAL WORK SHIFT

FUELER FUELER FUELER REPAIR REPAIR FOUND
FUELQUANTITY FUELQUANTITY FUELQUANTITY PART FOUND ASSEMBLE

CENTER CENTER CENTER ENGINEER SIGN TECHNICIAN
MAINTANK DISPATCH FUELGAUGE TEST ENGINEER REPORT

FUELGAUGE FUELGAUGE MAINTANK CHECK NUMBER PANEL
IMBAL MAINTANK IMBAL SHIFT SHIFT REPAIR

REFUEL IMBAL REFUEL SIGN MAINTAIN JOB
CROSSFEED REFUEL PLAN ASSEMBLE TEST XYZ

QUANTITY QUANTITY CALCULATE MAINTAIN ASSEMBLE BOLT
BALANCE PLAN CROSSFEED SERVE AIRCRAFT CARD

CALCULATE CROSSFEED BALANCE CARD XYZ LEAK
EMPTY CALCULATE EMPTY TECHNICIAN TECHNICIAN JOBCARD

[21] S. Hettich and S.D. Bay, ”The UCI KDD Archive
[http://kdd.ics.uci.edu],” Irvine, CA: University of California, Department
of Information and Computer Science, 1999.

[22] S. Wolfe, ”Wordplay: An Examination of Semantic Approaches to
Classify Safety Reports,” AIAA Infotech@Aerospace, AIAA Paper 2007-
2821, Rohnert Park, CA, May 2007.



14

BOW

Category

Matix

Document
Document

DocumentPre-

categorized 

Documents

Reduce Terms

Train SVM/NMF 

Model

Model File

Unknown 

Document
PredictReduce Terms Scale Output

Display 

Prediction

Fig. 11. ASAP Classification Flow in Mariana



15

Fig. 12. Screenshot of Auto-Classification Tool


